Westoby, M. & Wright, I. J. Land-plant ecology on the idea of purposeful traits. Traits Ecol. Evol. 21, 261–268 (2006).
Google Scholar
Chown, S. L. & Gaston, Okay. J. Physique measurement variation in bugs: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).
Google Scholar
Parr, C. L. et al. GlobalAnts: a brand new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).
Google Scholar
Wolff, J. O., Wierucka, Okay., Uhl, G. & Herberstein, M. E. Constructing habits doesn’t drive charges of phenotypic evolution in spiders. Proceedings of the Nationwide Academy of Sciences 118, e2102693118 (2021).
Google Scholar
Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic teams for mining potential metabolic capacities of archaeal and bacterial taxonomic teams. Database 2019 (2019).
Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait knowledge. Scientific Information 7, 170 (2020).
Google Scholar
Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. In direction of institution of a centralized spider traits database. The Journal of Arachnology (2020).
Díaz, S. et al. The worldwide spectrum of plant kind and performance. Nature 529, 167–171 (2016).
Google Scholar
Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).
Google Scholar
De Meester, G. & Huyghe, Okay. & Van Damme, R. Mind measurement, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).
Google Scholar
Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A worldwide synthesis of animal phenological responses to local weather change. Nat. Clim. Chang. 8, 224–228 (2018).
Google Scholar
Makarieva, A. M. et al. Imply mass-specific metabolic charges are strikingly comparable throughout life’s main domains: Proof for all times’s metabolic optimum. Proceedings of the Nationwide Academy of Sciences 105, 16994 (2008).
Google Scholar
Gallagher, R. V. et al. Open Science rules for accelerating trait-based science throughout the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).
Google Scholar
R Core Staff. A Language and Setting for Statistical Computing. Vienna, Austria: R Basis for Statistical Computing. (2020).
Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).
Pebesma, E., Mailund, T. & Hiebert, J. Measurement Models in R. R J. 8, 486–494 (2016).
Google Scholar
Hiebert, J. udunits-2 bindings for R. (2016).
Iwaniuk, A. N. & Nelson, J. E. Can endocranial quantity be used as an estimate of mind measurement in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).
Google Scholar
Taylor, G. M., Nol, E. & Boire, D. Mind areas and encephalization in anurans: adaptation or stability? Mind Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).
Google Scholar
McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).
Christian, Okay. & Conley, Okay. Exercise and Resting Metabolism of Varanid Lizards In contrast With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).
Google Scholar
Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).
Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to chilly: power metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).
Google Scholar
Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome kinds in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).
Google Scholar
Haim, A. Adaptive variations in warmth manufacturing inside Gerbils (genus Gerbillus) from totally different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).
Google Scholar
Kamel, S. & Gatten, R. E. J. Cardio and Anaerobic Exercise Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).
Google Scholar
Gatten, R. E. Jr. Cardio metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).
Google Scholar
Coelho, J. R. & Moore, A. J. Allometry of resting metabolic price in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).
Google Scholar
Lighton, J. & Garrigan, D. Ant respiration: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).
Google Scholar
Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic price in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).
Google Scholar
Bozinovic, F. & Contreras, L. C. Basal price of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).
Google Scholar
Morrison, P. & Middleton, E. H. Physique temperature and metabolism within the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).
Google Scholar
Bartholomew, G. A. & Casey, T. M. Physique temperature and oxygen consumption throughout relaxation and exercise in relation to physique measurement in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).
Google Scholar
Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Physique temperature, exercise cycle and metabolic price in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).
Google Scholar
Leitner, P. & Nelson, J. E. Physique temperature, oxygen consumption and coronary heart price within the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).
Google Scholar
Whittow, G. C., Gould, E. & Rand, D. Physique temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).
Google Scholar
Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).
Shelton, T. G. & Appel, A. G. Carbon dioxide launch in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): results of caste, mass, and motion. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).
Google Scholar
Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Adjustments within the Charge of CO2 Launch following Feeding within the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).
Google Scholar
Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: cardio working. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).
Google Scholar
Arends, A. & McNab, B. Okay. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).
Google Scholar
McNab, B. Okay. The comparative energetics of inflexible endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).
Google Scholar
Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).
Google Scholar
Haim, A. & Skinner, J. D. A comparative research of metabolic charges and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).
Google Scholar
Else, P. L. & Hulbert, A. J. Comparability of the “mammal machine” and the “reptile machine”: power manufacturing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).
Google Scholar
Duncan, F. D. & Crewe, R. M. A comparability of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).
Google Scholar
Kurta, A. & Ferkin, M. The correlation between demography and metabolic price: a check utilizing the seaside vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).
Google Scholar
Chown, S. L. & Holter, P. Discontinuous gasoline trade cycles in Aphodius fossor (Scarabaeidae): a check of hypotheses regarding origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).
Google Scholar
Duncan, F. D. & Byrne, M. J. Discontinuous gasoline trade in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).
Google Scholar
Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal historical past have an effect on metabolic plasticity?: a research in three Phyllotis species alongside an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).
Google Scholar
Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, Okay. S. Ecophysiology, vary contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).
Google Scholar
Rübsamen, U., Hume, I. D. & Rübsamen, Okay. Impact of ambient temperature on autonomic thermoregulation and exercise patterns within the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).
Google Scholar
Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Impact of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).
Google Scholar
Louw, G., Younger, B. & Bligh, J. Impact of thyroxine and noradrenaline on thermoregulation, cardiac price and oxygen consumption within the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).
Google Scholar
Full, R. J., Zuccarello, D. A. & Tullis, A. Impact of variation in kind on the price of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).
Google Scholar
Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Results of exercise and temperature on cardio and anaerobic metabolism within the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).
Google Scholar
Thompson, G. G. & Withers, P. C. Results of physique mass and temperature on commonplace metabolic charges for 2 Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).
Hack, M. A. The results of mass and age on commonplace metabolic price in home crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).
Google Scholar
Gatten, R. E. Jr. Results of temperature and exercise on cardio and anaerobic metabolism and coronary heart price within the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).
Gleeson, T. T. The results of coaching and captivity on the metabolic capability of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).
Google Scholar
Bartholomew, G. A. & Lighton, J. R. Endothermy and power metabolism of an enormous tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).
Google Scholar
Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, Okay. The energetic prices of calling within the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).
Google Scholar
Kotiaho, J. S. et al. Energetic prices of measurement and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).
Google Scholar
Chaplin, S. B. The energetic significance of huddling habits in frequent bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).
Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, working, and free-living within the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).
Google Scholar
Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).
Google Scholar
Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).
Google Scholar
Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the price of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).
Google Scholar
Marhold, S. & Nagel, A. The energetics of the frequent mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).
Google Scholar
Pauls, R. W. Energetics of the pink squirrel: a laboratory research of the results of temperature, seasonal acclimatization, use of the nest and train. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).
Google Scholar
Brush, A. H. Energetics, temperature regulation and circulation in resting, lively and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).
Google Scholar
Bailey, C. G. & Riegert, P. W. Power dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).
Google Scholar
Prinzinger, R., Lübben, I. & Schuchmann, Okay.-L. Power metabolism and physique temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).
Google Scholar
Baudinette, R. V. Power metabolism and evaporative water loss within the California floor squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).
Google Scholar
Could, M. L. Power metabolism of dragonflies (Odonata: Anisoptera) at relaxation and through endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).
Google Scholar
Baudinette, R. V., Churchill, S. Okay., Christian, Okay. A., Nelson, J. E. & Hudson, P. J. Power, water steadiness and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).
Google Scholar
Withers, P. C. Power, Water, and Solute Steadiness of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).
Google Scholar
Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling within the Desert Cicada: Thermal Effectivity and Water/Metabolic Prices. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).
Google Scholar
Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).
Google Scholar
Wunder, B. A. Evaporative water loss from birds: results of synthetic radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).
Google Scholar
Maclean, G. S. Components influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).
Google Scholar
Campbell, Okay. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).
Google Scholar
Weathers, W. W., Paton, D. C. & Seymour, R. S. Area Metabolic Charge and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).
Google Scholar
Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).
Google Scholar
Greenstone, M. H. & Bennett, A. F. Foraging technique and metabolic price in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).
Google Scholar
Schmitz, A. Practical morphology of the respiratory organs within the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).
Google Scholar
Marder, J. & Bernstein, R. Warmth steadiness of the partridge Alectoris chukar uncovered to average, excessive and excessive thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).
Google Scholar
Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): every day torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).
Google Scholar
Zari, T. The affect of physique mass and temperature on the usual metabolic price of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).
Google Scholar
Jensen, T. F. & Nielsen, M. G. The affect of physique measurement and temperature on employee ant respiration. Nat. Jutl. 18, 21–25 (1975).
McNab, B. Okay. The Affect of Physique Measurement on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).
Google Scholar
Shillington, C. Inter-sexual variations in resting metabolic charges within the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).
Google Scholar
Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the usual metabolic price of bugs: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).
Google Scholar
Hailey, A. & Davies, P. M. C. Life-style, latitude and exercise metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).
Google Scholar
Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or aggressive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).
Google Scholar
Putnam, R. W. & Murphy, R. W. Low metabolic price in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).
Google Scholar
Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Normal Metabolism in Ticks: A Legitimate Case of Low Metabolic Charges in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).
Google Scholar
Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular variations within the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).
Google Scholar
Casey, T. M., Withers, P. C. & Casey, Okay. Okay. Metabolic and respiratory responses of arctic mammals to ambient temperature throughout the summer time. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).
Google Scholar
Grant, G. S. & Whittow, G. C. Metabolic price of incubation within the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).
Google Scholar
Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the price of foraging within the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).
Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).
Google Scholar
Thurling, D. J. Metabolic price and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).
Google Scholar
Vleck, C. M. & Vleck, D. Metabolic price in 5 tropical hen species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).
Google Scholar
Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic price within the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).
Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic price is negatively linked to grownup survival however doesn’t clarify latitudinal variations in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).
Google Scholar
Worthen, G. L. & Kilgore, D. L. Metabolic price of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).
Google Scholar
Hails, C. J. The metabolic price of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).
Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic price variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).
Google Scholar
Schmitz, A. Metabolic charges throughout relaxation and exercise in otherwise tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).
Google Scholar
Anderson, J. F. Metabolic charges of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).
Adams, N. J. & Brown, C. R. Metabolic charges of sub-Antarctic Procellariiformes: a comparative research. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).
Google Scholar
Morrison, P. & Ryser, F. A. Metabolism and physique temperature in a small hibernator, the meadow leaping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).
Google Scholar
Bieńkowski, P. & Marszałek, U. Metabolism and power finances within the snow vole. Acta Theriol. 19, 55–67 (1974).
Google Scholar
Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland inhabitants of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).
Google Scholar
Król, E. Metabolism and thermoregulation within the jap hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).
Google Scholar
Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Consuming Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).
Google Scholar
Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).
Google Scholar
Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).
Google Scholar
Hill, R. W. Metabolism, thermal conductance, and physique temperature in one of many largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).
Google Scholar
Saarela, S. & Hissa, R. Metabolism, thermogenesis and every day rhythm of physique temperature within the wooden lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).
Google Scholar
MacMillen, R. E. Nonconformance of ordinary metabolic price with physique mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).
Google Scholar
Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).
Google Scholar
Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Vitamin and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).
Google Scholar
Farrell, D. J. & Wooden, A. J. The vitamin of the feminine mink (Mustela vison). I. The metabolic price of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).
Google Scholar
Hennemann, W. W. & Konecny, M. J. Oxygen consumption in giant noticed genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).
Google Scholar
Could, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of lively and inactive grownup tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).
Google Scholar
Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths Throughout Relaxation, Pre-Flight Heat-Up, and Flight In Relation to Physique Measurement and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).
Google Scholar
MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and physique temperature within the sooty tern. The Auk, 72–79 (1977).
Francis, C. & Brooks, G. R. Oxygen consumption, price of coronary heart beat and ventilatory price in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).
Google Scholar
Tucker, V. A. Oxygen consumption, thermal conductance, and torpor within the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).
Google Scholar
McNab, B. Okay. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).
Google Scholar
Genoud, M., Bonaccorso, F. J. & Anends, A. Charge of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).
Google Scholar
Genoud, M. & Ruedi, M. Charge of metabolism, temperature laws, and evaporative water loss within the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).
Google Scholar
Ricklefs, R. E. & Matthew, Okay. Okay. Charges of oxygen consumption in 4 species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).
Google Scholar
Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Normal Metabolic Charge and Physique Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).
Google Scholar
Goldstein, R. B. Relation of metabolism to ambient temperature within the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).
Google Scholar
Mispagel, M. E. Relation of oxygen consumption to measurement and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).
Google Scholar
Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical hen species. The Auk, 25–37 (1984).
Holter, P. Useful resource utilization and native coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).
Google Scholar
Goldstein, D. L. & Nagy, Okay. A. Useful resource Utilization by Desert Quail: Time and Power, Meals and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).
Google Scholar
Louw, G. N., Nicolson, S. W. & Seely, M. Okay. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).
Google Scholar
Anderson, J. F. & Prestwich, Okay. N. Respiratory Gasoline Alternate in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).
Google Scholar
Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).
Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).
Google Scholar
Nielsen, M. G. Respiratory charges of ants from totally different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).
Google Scholar
Calder, W. A. III & Dawson, T. J. Resting metabolic charges of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).
Google Scholar
Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic charges of two orbweb spiders: A primary method to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).
Google Scholar
Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide launch and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).
Google Scholar
Chown, S. L. et al. Scaling of insect metabolic price is inconsistent with the nutrient provide community mannequin. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).
Google Scholar
Bartholomew, G. A. & Lighton, J. R. B. Quick Communication: Air flow and Oxygen Consumption Throughout Relaxation and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).
Google Scholar
Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic price within the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).
Google Scholar
Lighton, J. R. Sluggish Discontinuous Air flow within the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).
Google Scholar
Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘sluggish tempo of life’ in Australian old-endemic passerine birds just isn’t accompanied by low basal metabolic charges. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).
Google Scholar
Younger, S. R. & Block, W. Some components affecting metabolic price in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).
Wang, L. C.-H. & Hudson, J. W. Some physiological facets of temperature regulation within the normothermic and lethargic hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).
Google Scholar
Bedford, G. S. & Christian, Okay. A. Normal metabolic price and most well-liked physique temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).
Google Scholar
Vogt, J. T. & Appel, A. G. Normal metabolic price of the hearth ant, Solenopsis invicta Buren: results of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).
Google Scholar
Thompson, G., Heger, N., Heger, T. & Withers, P. Normal metabolic price of the most important Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).
Google Scholar
Vitali, S. D., Withers, P. C. & Richardson, Okay. C. Normal metabolic charges of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).
Google Scholar
Dawson, T. J., Grant, T. R. & Fanning, D. Normal Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).
Google Scholar
Al-Sadoon, M. Okay. & Abdo, N. M. Temperature results on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).
Google Scholar
Roxburgh, L. & Perrin, M. R. Temperature regulation and exercise sample of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).
Google Scholar
Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating jap chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).
Google Scholar
Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie canine, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).
Google Scholar
Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation within the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).
Google Scholar
Ebisu, R. J. & Whittow, G. C. Temperature regulation within the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).
Google Scholar
Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation within the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).
Google Scholar
Fusari, M. H. Temperature responses of ordinary, cardio metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).
Google Scholar
Dawson, T. J. & Fanning, F. D. Thermal and energetic issues of semiaquatic mammals: a research of the Australian water rat, together with comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).
Google Scholar
Campbell, Okay. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)081<0578:TBAMOT>2.0.CO;2 (2000).
Hosken, D. J. Thermal Biology and Metabolism of the Better Lengthy-eared Bat. Nyctophilus main (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).
Google Scholar
Duxbury, Okay. J. & Perrin, M. Thermal biology and water turnover price within the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).
Google Scholar
Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).
Google Scholar
Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).
Google Scholar
Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).
Google Scholar
Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).
Google Scholar
Kamau, J. M., Johansen, Okay. & Maloiy, G. Thermoregulation and commonplace metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).
Google Scholar
Knight, M. H. Thermoregulation within the largest African cricetid, the large rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).
Google Scholar
Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling throughout the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).
Google Scholar
Casey, T. M. & Casey, Okay. Okay. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).
Google Scholar
Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water economic system within the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).
Google Scholar
Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).
Google Scholar
du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).
Google Scholar
Bradley, W. & Yousef, M. Thermoregulatory responses within the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).
Google Scholar
Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).
Google Scholar
El-Nouty, F. D., Yousef, M. Okay., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic price in burros, Equus asinus, and llamas, Lama glama: results of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).
Google Scholar
Krüger, Okay., Prinzinger, R. & Schuchmann, Okay.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).
Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gasoline Alternate, Physique Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).
Google Scholar
Zachariassen, Okay. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).
Google Scholar
Bucher, T. L. Air flow and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).
Google Scholar
Bickler, P. E. & Anderson, R. A. Air flow, Gasoline Alternate, and Cardio Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).
Google Scholar
Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of mind miniaturization in ants. Mind Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).
Google Scholar
Quesada, R. et al. The allometry of CNS measurement and penalties of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).
Google Scholar
Mares, S., Ash, L. & Gronenberg, W. Mind allometry in bumblebee and honey bee employees. Mind Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).
Google Scholar
Mlikovsky, J. Mind measurement and forearmen magnum space in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).
Mlikovsky, J. Mind measurement in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).
Bronson, R. T. Mind weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).
Google Scholar
Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravado: Little proof of a relationship between mind measurement and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).
Google Scholar
Boddy, A. M. et al. Comparative evaluation of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean mind scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).
Google Scholar
Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and mind measurement in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).
Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential funding in mind areas for a diurnal and nocturnal life-style in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.
Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).
Google Scholar
Rosenzweig, M. & Bennett, E. L. Results of differential environments on mind weights and enzyme actions in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).
Google Scholar
Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).
Google Scholar
Ashwell, Okay. W. S. Encephalization of Australian and New Guinean marsupials. Mind Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).
Google Scholar
Hoops, D. et al. Proof for concerted and mosaic mind evolution in dragon lizards. Mind Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).
Google Scholar
Pasquet, A., Toscani, C. & Anotaux, M. Affect of getting older on mind and net traits of an orb net spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).
Google Scholar
Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).
Naccarati, S. On the relation between the load of the inner secretory glands and the physique weight and mind weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).
Google Scholar
Crile, G. & Quiring, D. P. A report of the physique weight and sure organ and gland weights of 3690 animals. Ohio J. Sci. (1940).
Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative mind measurement in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).
Google Scholar
Hrdlička, A. Weight of the mind and of the inner organs in American monkeys. With knowledge on mind weight in different apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).
Google Scholar
Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Variations for nocturnal and diurnal imaginative and prescient within the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).
Google Scholar
Napiorkowska, T. & Kobak, J. The allometry of the central nervous system throughout the postembryonic growth of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).
Google Scholar
El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric mind dimorphism revisited: Implementation of a volumetric 3D commonplace mind in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).
Google Scholar
Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Mind structure of the most important dwelling land arthropod, the Big Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): proof for a outstanding central olfactory pathway? Entrance. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).
Google Scholar
Powell, B. J. & Leal, M. Mind Group and Habitat Complexity in Anolis Lizards. Mind Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).
Google Scholar
Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Educational Press, 1979).
Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body measurement isometry in a minute parasitic wasp. Mind Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).
Google Scholar
Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces mind quantity in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).
Google Scholar
Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of mind morphology and communication modalities in lizards. Present Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).
Google Scholar
Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional common formed atlas of the Heliothis virescens mind with built-in gustatory and olfactory neurons. Entrance. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).
Montgomery, S. H. & Merrill, R. M. Divergence in mind composition throughout the early phases of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).
Google Scholar
Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and mind evolution in insect societies: Neurobiology of utmost specialization within the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).
Google Scholar
Rein, Okay., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Normal Mind. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).
Google Scholar
Shen, J.-M., Li, R.-D. & Gao, F.-Y. Results of ambient temperature on lipid and fatty acid composition within the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).
Google Scholar
Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Funding in increased order central processing areas just isn’t constrained by mind measurement in social bugs. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).
Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Grey (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).
Google Scholar
Makarova, A. A. & Polilov, A. A. Peculiarities of the mind group and high-quality construction in small bugs associated to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).
Google Scholar
Bininda‐Emonds, O. R. P. Pinniped mind sizes. Mar. Mamm. Sci. 16, 469–481 (2000).
Google Scholar
Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialised, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).
Google Scholar
O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, Okay. Measurement constraints and sensory variations have an effect on mosaic mind evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).
Google Scholar
Kamhi, J. F., Gronenberg, W., Robson, S. Okay. A. & Traniello, J. F. A. Social complexity influences mind funding and neural operation prices in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).
Google Scholar
Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the mind of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).
Google Scholar
O’Donnell, S. et al. A check of neuroecological predictions utilizing paperwasp caste variations in mind construction (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).
Google Scholar
Weltzien, P. & Barth, F. G. Volumetric measurements don’t show that the spider mind “central physique” has a particular function in net constructing. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).
Google Scholar